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ABSTRACT

Human annotation in large scale image databases is time-
consuming and error-prone. Since it is very hard to mine
image databases using just visual features or semantic de-
scriptors, it is common to transform the image features into
a semantically meaningful space for tag prediction. In this
paper, we propose to perform image annotation in a seman-
tic space inferred based on sparse representations. By con-
structing a semantic embedding for the visual features, that is
constrained to be close to the tag embedding, we show that
a robust inverse map can be used to predict the tags. Exper-
iments using standard datasets show the effectiveness of the
proposed approach in automatic image annotation when com-
pared to existing methods.

Index Terms— image annotation, sparse coding, embed-
ding, inverse map, RBF interpolation.

1. INTRODUCTION

Textual information or tags can be useful meta-data for im-
ages. In large scale image retrieval systems, it is typical to
present a textual query to retrieve semantically relevant im-
ages. Since a semantic concept can manifest into a wide range
of visual representations, it is often dificult to mine through
an image database only based on visual features or the tags.
For example, the same set of tags {Child, Car}, can describe
images of a child inside a car, or a child playing with a toy car
(Figure 1). This illustrates the impreciseness and incomplete-
ness of available tags. In such cases, the image content can
be used to resolve the ambiguity in the concepts associated
with images and discover additional descriptive tags. Hence,
the goal of automatic image annotation is to predict new tags,
and possibly refine existing noisy tags, based on information
from visually similar images.

The problem of image annotation has been studied ex-
tensively in the recent years. A popular class of algorithms
attempt to learn appropriate image classifiers to predict con-
cepts and keywords [1, 2, 3]. Learning a regressor or a clas-
sifer to predict tags using the visual features is highly ill-
posed. This is because a mapping from features to semantic

Fig. 1. Sample images that can be described by the same
set of tags {Child, Car}. The large variability in the image
content makes it hard to retrieve semantically relevant images
just based on the tags or visual features.

tags may not exist, and need not be smooth even if it exists.
As a result, approaches that infer correlations between visual
featurs and textual descriptors have been found to be more
effective [4, 5, 6, 7].

An important challenge in designing image annotation
systems is to effectively measure semantic similarities be-
tween two images with multiple labels. This requires a clear
understanding of the relation between the spaces of visual
features and semantic descriptors. By transforming visual
features into a semantically meaningful space, one can infer
similarities between images more robustly. In [8], the authors
map both visual features and tags to the same latent space us-
ing canonical correlation analysis and incorporate high-level
image semantics. Based on the intuition that images with
similar features might have similar tags, the authors in [9]
create an embedding for the features such that the relations
between their corresponding tag vectors are satisfied.

In this paper, we develop a new approach to compute se-
mantically relevant embeddings for visual features, and also
present an algorithm for automatic annotation. We propose to
use reference-based features [10] to describe the visual con-
tent, and employ sparse representations to infer relationship
between images, taking into account both features and tags.
Using the set of joint sparse codes, we propose to compute



feature embeddings that are semantically meaningful. Finally,
we build an inverse map to predict the image tags from its
low-dimensional feature embedding. We evaluate the pro-
posed method on two different datasets and demonstrate its
effectiveness in discovering the semantic concepts.

2. FEATURE EXTRACTION

In order to allow for improved semantic comparison between
different images, we propose to employ reference-based fea-
tures in image annotation. While reference-based feature ex-
traction has been successfully used in object recognition [10],
it is a natural candidate for use in multi-label annotation. Sim-
ilar to transfer learning approaches [11], it is assumed that
we have access to a reference set of annotated images, dif-
ferent from the images used for training. It is important to
note that the collection of labels in the reference set can be
completely different from that of the training data. The ref-
erence set comprises groups of annotated images, in which
each group contains images that share a label. In this feature
extraction method, we compute the average similarity of an
image feature to each group in the reference set. As a result,
we represent an image using confidence measures for the rel-
evance of every label in the reference set to the image feature.

Given an image I , we extract dense SIFT descriptors from
overlapping patches of size 16× 16. In order to aggregate the
descriptors, we use the procedure in [12] to construct sparse
coding based spatial pyramid (ScSPM) features. We aggre-
gate the sparse codes for all descriptors in a spatial region by
max-pooling [12]. We construct a spatial pyramid by aggre-
gating the sparse codes at multiple spatial scales. Let us de-
note the ScSPM features for the T training images as {hi}Ti=1.
Using a similar procedure, we build the ScSPM features for
all images in the reference set. We denote the features in a ref-
erence group k by {rkn}

nk
n=1, where nk denotes the total num-

ber images in that group. For each training image i, we obtain
the similarity between its feature and that of a reference-set
image using the measure proposed in [10]

S(hi, r
k
n) = 1−

γ
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k
n)

2

)
Γ( t

2 )
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where d(hi, r
k
n) denotes the χ2 distance between the features,

γ(.) is the lower incomplete gamma function, Γ denotes the
gamma function and t is a positive integer that specifies the
number of degrees of freedom. The second term in the ex-
pression is the cumulative distribution for chi-squared distri-
bution. For a reference class k, we use the average similarity
of the training feature with respect to all features in that class
as the kth dimension for the feature vector xi

xi(k) =
1

nk

nk∑
n=1

S(hi, r
n
k ). (2)

Following this, we obtain the reference-based feature by nor-
malizing xi to unit `2 norm. Features corresponding to all
training images are computed and stored in the matrix X ∈
RR×T , where R denotes the number of reference classes.

3. LEARNING SEMANTIC EMBEDDINGS

In order to perform tag prediction, we propose to explore the
low-dimensional structure of the feature and tag spaces, and
thereby infer the relationship between them. Though features
(or tags) lie in a high-dimensional space, inferring the un-
derlying low-dimensional structures will reveal only essential
information with little noise, and hence result in improved tag
prediction. We exploit the correlations between the features
and tags by computing joint sparse codes for the feature-tag
matrix D = [XT γBT ]T , where B ∈ RL×T is the matrix of
tag vectors, and γ is the scaling factor used to balance the total
energy of feature and tag spaces. We assume that the features
and tags are clustered along subspaces, and hence this struc-
ture can be discovered using sparse coding on examples as

min
A
‖D−DA‖2F + λ

T∑
i=1

‖ai‖1 s.t. aii = 0,∀i. (3)

Here A ∈ RT×T is the matrix of sparse coefficients, and the
constraint ensures that a sample will not be used in its own
representation.

We propose to compute low-dimensional embeddings for
the features and the tags using the relationships encoded by
A. Furthermore, we will also constrain the features to be
projected in the neighborhood of the tag embedding. This
will ensure that the resulting space is semantically meaning-
ful and can be used for effective tag prediction. The joint
optimization problem for computing the feature and the tag
embeddings is posed as

min
P,Q,{δi}Ti=1

T∑
i=1

‖PTxi −
∑
j

aijP
Txi‖22

+λ1‖QTbi −
∑

j aijQ
Tbi‖22 + λ2‖PTxi −QTBδi‖22

+λ3‖Wiδi‖1 s.t. PTP = I,QTQ = I. (4)

The matrices P ∈ RR×d and Q ∈ RS×d where d < R, d < S
define the low-dimensional embeddings of the features and
the tags respectively. The first two terms preserve the sparse
coding relationships for both features and tags in the low-
dimensional space. The next two terms constrain that the em-
bedded features be close to a local sparse linear combination
of the embedded tags. The weight matrix Wi ensures that
the embedded tags closest to PTxi are chosen when comput-
ing the sparse code δi. This problem is jointly non-convex
over P,Q, {δi}Ti=1, and hence we choose to minimize it in
an alternating manner over each of the variables.



Table 1. Precision-Recall rates for image annotation on the
Corel-5K dataset.

Algorithm Avg. Precision Avg. Recall
CMRM [6] 0.1 0.09
CRM [7] 0.16 0.19

CRM-Rect [7] 0.22 0.23
MBRM [5] 0.24 0.25
SML [13] 0.23 0.29
JEC [14] 0.27 0.32
MSC [9] 0.25 0.32
GS [15] 0.3 0.33

Proposed 0.37 0.4

Assuming that Q and {δi}Ti=1 are known, we solve for P
using

min
P

Tr(PTXMXTP)− 2λ2Tr(PTX∆TBTQ)

s.t. PTP = I. (5)

where M = (I − A)T (I − A) + λ2I, ∆ = [δ1δ2 . . . δT ],
and Tr(.) is the trace operator. In (5), the feasible set is {P :
PTP = I} and hence P lies in a Steifel manifold [16]. This
general problem of optimization over the manifold is solved
using the curvilinear search method with Barzilai-Borwein
(BB) steps as described in [17],[18]. In the second alternating
step, we optimize over Q, using the latest values for the other
two variables. This can be written as

min
Q

Tr(QTB∆N∆TBTQ)− 2λ2Tr(QTB∆XTP)

s.t. QTQ = I. (6)

where N = λ2(I−A)T (I−A) + I, and hence can be solved
in a similar manner as (5). The third step is to solve for the
sparse codes {δi}. Each sparse code can be solved as,

min
δi

‖PTxi −QTBδi‖22 +
λ3
λ2
‖Wiδi‖1 (7)

where the diagonal weight matrix Wi imposes a penalty that
encourages the selection of the embedded tags, {QTbj}Tj=1,
that are close to the embedded feature, PTxi. In practice,
we simplify this problem by choosing the k nearest neighbors
of PTxi from {QTbj}Tj=1, which is equivalent to setting the
penalties for neighbors as 1, and non-neighbors as∞ in Wi.
This is then solved as a least squares problem on the chosen
neighbors. In this work, we experimentally determined that
k = 5 provides a good performance.

4. TAG PREDICTION USING INVERSE MAPS

Using the semantic embedding, we project the image fea-
tures onto the neighborhood of the low-dimensional tag em-
bedding. As a result, PTX can be considered to be lying

Table 2. Precision-Recall rates for image annotation on the
IAPR TC-12 dataset.

Algorithm Avg. Precision Avg. Recall
MBRM [5] 0.24 0.23
JEC [14] 0.28 0.29

Lasso [14] 0.28 0.29
GS [15] 0.32 0.29

Proposed 0.39 0.34

close to some smooth embedding of the tag space itself. Pre-
dicting tags amounts to computing an inverse map from the
d−dimensional space to the space of tags. This is very similar
to the problem of inverting embeddings obtained using non-
linear dimensionality reduction in the manifold learning liter-
ature. Though different forms of mapping can be considered,
it has been found that inverse maps obtained using the natural
cubic radial basis function (RBF) kernel is very effective in
reconstructing the underlying structure of the manifold [19].
Note that, the effectiveness of this inverse mapping depends
strongly on the choice of the dimension d, smoothness of the
embedding, and the availability of enough samples. Hence,
we propose to learn a natural cubic interpolant in the seman-
tic space using Y = PTX to predict tags.

For any novel sample y, we can construct the natural cu-
bic interpolant for each dimension of the tag vector as follows:

T∑
j=1

cj(y)k(y,yj) + yTα1 + α0

subj. to
T∑

j=1

cj = 0,

T∑
j=1

cjyj = 0, (8)

where k(y,yj) = ‖y − yj‖32, α0 is a constant term, and
α1 ∈ Rd. Using the set of training samples, we can estimate
the interpolation parameters by solving the following system
of linear equations.[

K Z
ZT 0

] [
C
α

]
=

[
B
0

]
, (9)

where K ∈ RT×T is the kernel matrix, Z = [1 Y]T , C ∈
T × L is interpolation weight matrix, α0 ∈ R1×L, α1 ∈
RT×L, and α = [αT

0 αT
1 ]T . To annotate a test image It, we

need to extract the reference based feature and project it onto
the semantic space yt = PTxt. Finally, its tag vector can be
predicted with the inverse map using (8).

5. PERFORMANCE EVALUATION

We studied the performance of the proposed algorithm us-
ing two different datasets: (a) Corel-5K [20], and (b) IAPR



Table 3. Annotation results obtained for sample test images from the IAPR TC-12 dataset. In each case, the ground-truth
human annotation is also included.

Human
Annotation

desert, middle,
rock, tourist

airplane, desert,
middle, mountain

cloud, fence,
hill, man,

meadow, statue,
wall

bridge,
building,

meadow, river,
sky, skyscraper,

tree

bay, cloud, coast,
grass, hill, sea, sky

Proposed
Algorithm

desert, rock,
people, sky,

group

airplane, mountain,
sky, cloud, building

statue, fence,
mountain,

cloud, grass

building, sky,
city, grass,

water

water, cloud, grass,
hill, sky

TC-12 [14]. In both these datasets, each image is character-
ized by multiple tags, and performance evaluation is carried
out on a test set different from the images used during train-
ing. Commonly used performance metrics are the precision
and recall values for each tag in the vocabulary. Precision of
a label is measured as the ratio between the number of cor-
rectly annotated images and the total number of images anno-
tated with that tag by the algorithm. Recall is defined as the
ratio between the number of correctly annotated images and
the number of images that have the said label in the ground
truth annotation. Similar to the procedure followed in [9], we
choose the top 5 tags, with the largest propagation scores in
the predicted tag vector, as the annotation for a test image.
Parameter Setting: The size of the codebook for computing
the ScSPM feature was fixed at 1024, and the sparse codes
were aggregated using max-pooling in 3 spatial levels. The
resulting ScSPM feature vector was of size 21, 504. In order
to compute the sparse codes for both features and tags in (3),
the sparstiy penalty was fixed at 0.3. In all our simulations,
the number of projection directions d was fixed at 100.
Corel-5K Dataset: This is a very commonly used compar-
ative dataset for image annotation. There are 5000 images
in total, and each image is annotated with 1 to 5 keywords.
We used 4500 images for training the algorithm, and evalu-
ated the performance using the rest. The total number of key-
words in the vocabulary is 260. For building the referece set,
we used the IAPR images and grouped them into categories
based on their tags. Note that, we ignored tags which had the
same set of images in them. As a result, the feature vector
for each image, computed using the procedure described in
Section 2 were of size 259× 1.
IAPR TC-12 Dataset: This dataset is a collection of about
20, 000 natural images including people, animals, cities, land-
scape etc. Unlike the Corel-5K dataset, the images in this dat-

set are accompanied by free-flowing text captions, and hence
it is common to extract nouns from these captions to build the
tags. We used the ground-truth image annotation generated
by the authors in [14]. The total of number of labels is 291,
where each image is annotated by about 4.7 tags on average.
Following the standard evaluation procedure, we used 17, 500
images for training and the rest for testing. Since the Corel-
5K dataset was used as the reference set, the feature vectors
were of size 260× 1.

Results: Tables 1 and 2 show the average precision and re-
call values obtained with the two datasets. For comparison,
we have included the performance of other existing methods
for image annotation. The proposed algorithm provided su-
perior annotation results in both cases and outperformed ex-
isting schemes. Table 3 shows a sample set of images from
the IAPR TC-12 dataset along with their predicted tags. Our
algorithm was able to infer meaningful descriptors for these
images such as the objects present in them, different compo-
nents of the background and in some cases abstract concepts
that the human annotation does not reveal. For example, in the
fourth image (Table 3), though the proposed method missed
to identify the tags skyscraper and bridge, it has inferred the
keyword city which is a higher-level description of the image
content. The results demonstrate that it is important to ex-
plore correlations in both features and tags to create seman-
tically meaningful representations for images. Furthermore,
by constructing appropriate embeddings, tag prediction can
be performed using inverse maps efficiently. It will be in-
teresting to investigate the use of the proposed algorithm in
building higher-level abstract concepts based on tags inferred
for the different local regions in an image.
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